Introduction

According to NIST, “cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction (NIST, 2011).

The traditional approach incur a huge capital expenditure upfront along with too much excess capacity not allowing to predict the capacity based on the market demand. The Cloud Computing approach has the ability to provision computing capabilities without requiring the human interaction with the service provider. In addition to that, its ability to have a broad network access, resource pooling, elasticity and measured services are a few of the characteristics, which basically overpower the traditional hardware approach. As benefits, it can drastically cut down the procurement lead time, can produce better scalability, substantial cost savings (no capital cost, pay for what you use) with less management headaches in terms of operational costs.

Cloud Service Models

There are three (03) basic cloud service models such as IaaS (Infrastructure as a Service), Platform as a Service (PaaS) and Software as a Service (SaaS).

SaaS Service Model

In the SaaS cloud service model the consumer does not manage or control the underlying cloud infrastructure including network, servers, operating systems, storage or even individual application capabilities with the possible exception of limited user specific application configuration settings. A typical SaaS based application primarily provide multi-tenancy, scalability, customization and resource pooling features to the client.

Multi-tenancy

Multi-tenancy is the ability for multiple customers (tenants) to share the same applications and/ or compute resources. A single software/ application can be used and customized by different organizations as if they each have a separate instance, yet a single shared stack of software or hardware is used. Further it ensures that their data and customizations remain secure and insulated from the activity of all other tenants.

Multi-tenancy Models

There are three basic multi-tenancy models.

1. Separate applications and separate databases

2. One shared application and separate databases

3. One shared application and one shared database

Figure 1 – Multi-tenancy Models

Multi-tenancy Data Architectures

According to Figure 1, there are three types of multi-tenancy data architectures based on the way data is being stored.

1. Separate Databases

In this approach, each tenant data is stored in a separate database ensuring that the tenant can access only the specific tenant database. A separate database connection pool should be set up and need to select the connection pool based on the tenant ID associated with the logged in user.

2. Shared Database – Separate Schemas

In this approach, the data is stored in separate schemas in a single database for each tenant. Similar to the first approach separate connection pools can be created for each database schema. Alternatively a single connection pool also can be used and based on the connection tenant ID (i.e. using SET SCHEMA SQL command), the relevant schema is selected.

3. Shared Database – Shared Schema (Horizontally Partitioned)

In this approach, the data is stored in a single database schema. The tenant is separated from the tenant ID, which is represented by a separate column in each table in the schema. Only one connection pool is configured at the application level. Based on the tenant ID the database schema should be partitioned (horizontally) or indexed to speed up the performance.

Figure 2 – Multi-tenancy Data Architecture

References

1. NIST (2011), NIST Definition, https://www.nist.gov/news-events/news/2011/10/final-version-nist-cloud-computing-definition-published

VN:F [1.9.22_1171]
Rating: 0.0/10 (0 votes cast)
VN:F [1.9.22_1171]
Rating: 0 (from 0 votes)